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The dielectric behaviour of suspensions of spherical cells: 
a unitary approach 
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Center of Biotechnologies, Dumbrava Rosie 18, Bucharest 11. Romania 

Received 20 July 1993 

Abstract. The dielectric behaviour of a suspension of conducting spherical partides sur- 
rounded by low conducting shells, with fixed charges on the inner side, in respect of diffusive 
effects has been investigated. The results describe both a and 0 dispersion and reduce, in 
the corresponding limiting cases, to those previously presented by Garcia and co-workers, 
Pauly, Schwan and Schwan. The a dispersion is shown to be strongly dependent on charge 
density, shell thickness and diffusion effects, as well. 

1. Introduction 

One of the most important problems of our times consists in finding out quantitative 
methods to characterize the living state. 

Electrical (dielectric) properties of biological systems are assumed to lead to suitable 
parameters to describe the state of a living system and consequently, the contrivance 
of an appropriate model to describe the dielectric behaviour of biological systems has 
to be accomplished. 

It was not our aim to work out a complete electrical model of a living cell, but to 
develop a simplified one to contain the major features known about a biological cell 
and to exhibit the same behaviour when applying an armonic, low intensity electric 
field (with frequency range: 1 Hz-10 MHz). Consequently, the .dielectric behaviour of 
a suspension of diffusive,,conducting spheres, surrounded by low conductive shells with 
negligible diffusion coefficient and regular surface distribution of fixed charges on the 
inner side, is presented. 

Neglecting the effect of the active transport as well as of the cytoplasmic nonhomo- 
geneities on the dielectric behaviour, this model is assumed to exhibit large similarities 
with spherical biological cell suspensions regarding a and p dispersion (that appear at 
100 Hz-IO kHz and 100 kHz-10 MHz, respectively). The present study is an extension 
of the following treatments: 
(i) The influence of diffusion on the p dispersion of the permittivity of a spherical 
particles suspension, with insulating shells, conceived by Garcia et al (1985). 
(ii) The theory of the low-frequency dispersion of charged spherical particles in an 
electrolyte, developed by Schwarz (1962). 

The equivalent permittivity of a suspension of spherical particles provided by our 
approach describes both a and p dispersion. It reduces in the case of zero fixed charge 
and null membrane (shell) conductivity, to the results of Garcia and co-workers and 
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in the case of negligible shell thickness and no volume diffusion effects to those of 
Schwarz. 

2. Charge density distribution and potential calculation 

We shall consider (as in figure 1) a spherical particle (indicated by subscript 1) with 
complex permittivity and conductivity: 

~ ~~ 

U1 

1 0  EO 
E@ = El +- 
U*, = U1 + iw EOSI 

(1) 

with radius R I ,  surrounded by a low conducting, non-diffusive shell (subscript 2) of 
thickness d and complex permittivity and conductivity: 

u8~=u*+iwEOE2. 

On the inner face of the shell there is a uniform distribution of fixed charges no , .  This 
system is embedded in an infinite medium (subscript 3) with complex permittivity and 
conductivity: 

U,, = o3 + iw E ~ E ~  

to  which a uniform field is applied: E(t)=Eo exp(iwt). 

Figure 1. A spherical particle surrounded by a membrane with tixed negative charges on 
the inner side. 
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The external medium ( k = 3 )  is considered to be a charge reservoir that enables 
positive ions to migrate to the external side of the membrane balancing the fixed negative 
charges on the inner side when no field is applied: 

In each diffusive media we consider the simple case of opposite sign monovalent ions 
that have in the same media k (k= 1,3) the same volume density Nok (when no field is 
applied) and the same mobility uk. 

The conductivity crk is in this case: 

, Dk=2N&ke (5 )  

where e is the absolute value of the electron charge, and eNok is the volume charge 
density in medium k in the field absence. 

The mobilities are related to the diffusion  coefficient Dk according to Einstein's 
formula : 

(6) 
uk Dx=- KT. 
e 

When applying a field the ion density changes to (Garcia et al 1985): 

N:=NOk+(p: ( r ) / e )  exp(iwt). (7) 

Ip.&)l &Nowe (8) 

In the weak field limit we have : 

consequently, we shall consider that relation (5 )  remains valid in this limit. 

density: 
Taking into account the balance equation for charge we obtain for volume charge 

v2Pk(r) = G h W  (9) 

where: 

The general solution of (9) in spherical coordinates and with axial symmetry is: 

where Ank and &k are constants, P,,(cos 0) represents Legendre Polynomials and 
J++ are Bessel Functions. 

The equations for potential 

q d r ,  4 0  = vdr, 0) exp(io0 (12) 
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are listed below in the quasistatic approximation (Poisson equation for media 1 and 3, 
and Laplace equation for the shell) : 

(13) 
1 

€O€l 
v2q1(r, B)=- -p l ( r ,  e) ( rGG)  

V2R(r, e) = 0 (RI < r <RI +U'= R3) (14) 

Using the regularity conditions, we find the particular solution of the following 
type: 

The boundary conditions used to determine the coefficients A.1, An3, C,, D., F., H, 
are given in the appendix. 

(i) For charge density: 

Non trivial solutions are derived for n=O and n= 1, that is: 

Figure 2 presents the radial distribution of the intracellular field induced charge 
density relative to volume charge density dol. The maximum value is achieved at RI = 
2 x  lO-'m and is in agreement with relation (8), m=lO's-', &=IOOV/m. 

(ii) For potential: 

(U) 
I 

pl(r, e) =Cr cos p l ( r ,  0)  +CO (RI < r) 
€O&I 

&r, e)= Dr+-  cosO+Do+- F" (RIGrGR2) (23) 

(R39r). (24) 

i 3 r 

H Ho 1 93(r, eJ=-Eorcos B+-cos @ + - - - ~ p 3 ( r ,  6') 
? r &0&3G3 
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P, /I*%) 

0.mom 

Figure 2. The radial distribution of volume charge density in the internal sphere, r(m), 
m=106s- ’ .  8=0. 

Only p3(r, 8)  is needed to obtain the equivalent complex permittivity. For Hand 
Ho we subsequently have: 

[cz+im&z&o(l - Q ) + ~ o & ~ E ~ Q  +icueN(R, +d)(  I - Q)- ug3 

[ cY2+iOEzEo( 1 +2Q) - 2iWEi EoQ + ioeN(RI +d)(  1 +2Q) +2O,3 
(RI +d)’E, 

h 
H =  

h 

Ho=O. 

3. Eguivalent complex permittivity 

The complex permittivity cg of a homogeneous sphere is derived in the frame of 
Maxwell-Wagner formalism (Maxwell 1892, Wagner 1914) using the condition that 
the whole suspension has the same dielectric behaviour as an homogeneous sphere 
suspended in medium 3. In both cases the same expression of potential in medium 3 
has to be derived. As exp(-G3r) drops sharply, only the second term in (24) is used to 
calculate cp. 
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Considering p the volume concentration of the spherical particles in suspension, 
neglecting the interactions between particles, the following expression for suspension 
equivalent complex permittivity is obtained: 

3.1.- 

1..-- 

*.I- 

2.4- 

*.1-. 

4. Conclusions 

Figure 3. n and p dispersions of E (relative units) &,=SO. al=O.20Sm", s2=12. 
a?10.6Sm-', sl=7S, u3=0.3775m-', R r = 2  lO-'m, d=10"m, na,=10'6m-2, 
p-0.06, D,=2.07x10"0m's~', D,=2.07x10~'m2s~'. 

is related to the field induced displacement of the charges on the external side of the 
membrane that are connected with the fixed charge density no, through relations (4) 
and (A15). That is why information regarding this dispersion enables the determination 
of the biological cell resting potential (Gheorghiu 1993). 

0 to those of Garcia et nl(1985) in the case of zero fixed charge density (no, =0) and 

0 to those of Pauly and Schwan (1959) in the case of zero fixed charge density and 

0 to those of Schwarz (1962) in the case of diffusion, only on the external side of the 

Figures 6 and 7 reveal the dependence of a dispersion on membrane thickness and on 
diffusion in the external medium and on fixed charge density, respectively. 

Our results reduce: 

zero membrane conductivity (v2=O), relation (26) and (27); 

zero diffusion (N=O, S=O, Q=O), figure 5; 

membrane and for zero thickness of membrane (S=O, Q=O, d=O), figure 6. 
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Figure 4. a and p dispersions of equivalent conductivity U (Sm' '1. &,=80, 
0,  =O.u)O S m- ', E*= 12, ma= S m- ', ~ ~ * 1 8 ,  u,=0.377 S m -  ', RI =2  x 1K6m, 
d=IO-'m, no, =10'6m-'. p=O.Ob. D,=Z07 X 10-'0m2s"'. D,=2.07 x 10-vm's-'. In /3 
dispersion range the mnductivity increment is reduced by a factor 100. 

Figure 5. p dispersion of equivalent permittivity E (relative units), in the case of zero fixed 
charge density and no diffusion (--) and p dispersion according to (27) in the same 
conditions as in figure 3 (-). 

The strong dependence of the equivalent permittivity in a dispersion range (e.g. 
o = 100 s-I) on diffusion effects in medium 3 is pointed out in figure 8. 

By taking into consideration the diffusive phenomena as well as the presence of the 
membrane charge densities, one may notice important effects in the a dispersion range, 
whereas in the p one the related effects are rather small. As shown in figure 9, p 
dispersion exhibits a weak dependence on membrane charge distribution in this fre- 
quency range, our results being similar to those obtained by Garcia et a1 (1985). Conse- 
quently, in p dispersion range the validity of our model is implicit (as shown in figures 
5 and 9, the differences between our results and those of Pauly and Schwan (1959), or 

\ Garcia et aI (1985) are in the range of the experimental errors). The lack of data on a .' 
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F i e  h a dispersion ofequivalent permittivity E (relative units) zt =SO, 0, =0.200 S rn-', 
~ ~ - 1 2 ,  s ~ = ~ o - ~ S ~ - ' ,  ~,=7a. u3=0.377Sm-', R , = Z X  10-6m, d=10-'m, 
%1=10'~m-', p=0.06, D,=2.07x10-'0m2s~',  D,=2.O7X 10-9m2s-' according to (27) 
(-), in the case of zero membrane thickness, no diffusion in medium 1 and 3 but on 
the external face of the membrane (---), for a diKerent ion diKusion coefficient in the 
external medium D3=2x 10-'6mzs-' (-4 and for a diKerent membrane thickness, 
d = 1 0 - ~ ~  (. .. .). 

W [ U I  

Figure 7. a dispersion of equivalent permittivity (relative units) for different values of 
negative fixed charge surface density no, = IOr6 m-' (-), %,=lo" m-' (---). 

dispersion exhibited by cell suspensions under physiological conditions, prevent us fit- 
ting our model at lower frequencies too. Having in view the possibility of determining 
the electrical parameters of biological cells (including resting potential) by in v i m  dielec- 
tric spectroscopy on synchronized, spherical cell suspensions, emphasized by our 
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Figure 9. The plot of the difference between the equivalent permittivities (relative units) 
corresponding to DVo=OV and DVo=-150mV respectively. in p dispersion range. 

approach, we hope that, in spite of the experimental difficulties, a dispersion measure- 
ments will soon be available. Then, the validity of our model could be tested on the 
entire range of a and p dispersions, and further improvements of this study would 
become possible. 
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Appendix 

The boundary conditions used to determine the coefficients A A ,  An3, C,, 4,  F., H, 
are as below. 

The potential must be continuous at the interfaces: 

The normal components of the displacement must be related to the charges at the 
interfaces : 

where enol, en3 is the surface charge density on the inner, respectively, the external, side 
of the membrane. 

N,, is obtained by considering the balance equation for the charge on the external 
interface (Schwarz 1962). 

The normal component of the total current density must vanish at the interfaces 
(in the case of the insulating membrane): 

r=R3 aq3 ap3 u~-+D~-=O . 
ar ar 

For low conductive membrane the normal comvonent of the total current densitv 
must be continuous. For non-negligible shell conductivity, we have instead of (A6) and 
(A7) : 
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A3 and A30 are needed for the calculation of potential in medium k=3:  

G: G:(Rl+d)'exp[G3(RI + d ) ]  
e G:(Rl+d)2+2[1 +G3(Rl+d)] 

A3=-3&- 

(u3E2- u2e3) + eN(RI + d)a3  
h 

[ u2 +ioc2( 1 + ZQ) -2ioe3Q +iweN( RI + d ) ( l  + 2Q) +Zag, 
h Q3 

2G& exp[GdR~ + ~ ) I ~ o I Q ~ Q ~ ~  
4 1  + G3(RI +d)1&e3ug2 

A30=- 

where: 

g = ( l + 2 6 ) ~ 1 ~ , 1 + 2 ( 1  -6)[ioa1e2(1 + S ) + Q ~ ( Q I - ~ ~ E I S ) I  

h= (1 - S)OIU,I +(2+ 6 ) [ i r 0 a ~ ~ ~ ( 1  +S) +UZ(QI - i o s ~ S ) ]  

S=- QI GIRl - tanh(GIRl) 
i ox I  ( G I R I ) ~  tanh(GIRL)-2[GIRI - tanh(G~R~)]  

0 3  l+G3(Ri+d) 
Q=- 

n 3 ( 8 ) = n O 3 - N ~ s  e 
no3 1 

lWEg G:(Rl+d)'+Z[l + G ~ ( R I  +d)] 

N = -  
(RI +d)*  
2u3KT 

KT 1 +io 

( R r i  d)j' 
6= - 
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